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Abstract—This paper gives a general overview of the nature and 
important mechanisms behind internal loading of phosphorus (P), 
which is a phenomenon appearing frequently in shallow, eutrophic 
lakes upon a reduction of the external loading. Lake water quality is 
therefore not improved as expected. The P release originates from a 
pool accumulated in the sediment when the external loading was 
high. In most lake sediments, P bound to redox-sensitive iron 
compounds or P fixed in more or less labile organic forms constitute 
major fractions form that are potentially mobile and eventually may 
be released to the lake water. The duration of the recovery period 
following P loading reduction depends on the loading history, but it 
may last for decades in lakes with a high sediment P accumulation. 
During the phase of recovery, both the duration and net P release 
rates from the sediment seem to decline progressively. However, an 
important prerequisite for achieving long-term benefits to water 
quality is a sufficient reduction of the external P loading. 
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1. INTRODUCTION 

Nutrients, and in particular phosphorus (P) availability, have 
long been recognized as a factor of paramount importance for 
the water quality of lakes [1, 2, 3, 4, 5]. If P loading is 
excessive, phytoplankton is favored and this has significant 
negative implications for the overall water quality and 
biodiversity of the lake: the water becomes turbid, toxic algae 
may develop, submerged macrophytes disappear, fish stocks 
change toward less desirable species, and top down control by 
zooplankton on phytoplankton decreases. To reverse the 
eutrophication process, multiple measures have been 
introduced worldwide during the last 50 years with the aim to 
reduce the external loading of lakes, both at point sources by 
establishing sewage works and by reducing the nutrient 
loading from arable soils [6, 7, and 8]. Improved nutrient 
removal and catchment retention have also been achieved 
through the establishment of new wetlands or re-meandering 
of channelized streams [7, 9, and 10]. Although some lakes 
respond rapidly to changes in external P loading [11], lake 
recovery following a reduction of external loading is often 
delayed [12, 13, and 14]. Accumulated P in the sediment 
during the period of high loading equilibrates with the new 
and reduced loading and is released into the lake water [11, 

12, 15, and 16]. This internal loading can be so significant that 
it prevents improvements in water quality and the lake may 
thus not meet the established water quality criteria [17, 18] 
despite a reduction of the P-loading to a level where 
improvements were expected. Originally, mainly stratified 
lakes, which develop an anoxic hypolimnion during summer, 
were believed to suffer from internal P loading due to the 
redox-dependent release of iron-bound P [19, 20, 21, 22, and 
23]. In contrast, well-oxidized conditions throughout the water 
column and throughout the season in shallow lakes were 
believed to always establish an oxidized layer in the surface 
sediment that prevented P release. Later, numerous studies 
showed that sediments also release P if the overlaying water is 
aerobic[22,24,25,26] and that P released from the sediment of 
shallow lakes can constitute a substantial part of the total 
loading and sometimes even exceeds the external loading of 
P[16,27,28]. As a further difference to deep lakes, the 
sediment of shallow lakes may be in direct contact with the 
photic zone during the whole season that, together with a 
higher sediment surface per volume of water as water depth 
decreases, increases the importance of sediment–water 
interactions particularly in shallow lakes. The regular mixing 
regime in shallow lakes guarantees stable and near optimum 
conditions for primary production [29]. In this review we 
discuss the retention and release mechanisms of P in shallow, 
temperate lakes and illustrate it with results obtained from our 
own work in Danish, mainly shallow and eutrophic, lakes. In 
many of the lakes the external loading of P recently has been 
reduced but internal loading from the sediment constitutes a 
severe problem when trying to improve lake water quality. 

2. RETENTION OF PHOSPHORUS 

P enters the lake in either a particulate form, which can be 
directly deposited in the sediment, or as dissolved phosphate, 
which can be incorporated in organic matter by primary 
producers that eventually sink to the bottom in an organic 
form. Sedimentation may also occur via co precipitation with 
calcium carbonate [30, 31, 32, and 33] or the formation of and 
adsorption by iron-hydroxides [32, 34, 35, 36, and 37]. During 
early diagenesis, most of the sedimenting particulate P may be 
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redissolved [38]. The retention of P is lake specific. Lakes 
with a high flushing rate tend to have a lower relative P 
retention than lakes with a slower flushing rate. This 
relationship has been demonstrated through different simple, 
empirically established steady-state models of the 
Vollenweider type: P lake = LP/ (z*(σ + ρw), relating in-lake P 
(P lake) to specific loading (LP), sedimentary loss (σ), lake 
mean depth (z), and flushing rate (ρw) [39, 40]. Sedimentation 
rate can be estimated on the basis of observed empirical 
relationships with hydraulic retention time. As these models 
are based on systems in equilibrium, however, they cannot 
adequately describe the transient phase following a loading 
reduction before a new equilibrium is established. This is 
illustrated by the discrepancy often seen between measured 
and calculated annual P retention in eutrophic lakes in 
recovery [16, 41]. Attempts have been made to extend the 
Vollenweider models with simple models for P retention in 
lake sediment[28], or more or less complex dynamic models 
that attempt to describe the kinetics of the numerous physical, 
chemical, and biological processes determining sediment 
release[42,43,44,45]. When above this ratio internal P loading 
may be prevented by keeping the surface sediment oxidized 
[46]. 

3. FORMS OF PHOSPHORUS IN THE SEDIMENT 

Fixation of P in the sediment depends on the transport of 
soluble phosphate between solid components, adsorption-
desorption mechanisms, chemosorption, and biological 
assimilation [47]. Chemosorption is the chemical fixation of 
soluble compounds that are subsequently unaffected by 
changes in solute concentrations, whereas adsorption is a 
physical fixation of soluble compounds on surfaces in constant 
equilibrium with solute concentrations. Ad- and 
chemosorption processes often depend on both pH and the 
redox potential and are therefore influenced by the bacterial 
metabolism. Fractionation schemes using different methods of 
chemical sequential extractions have been widely used in 
order to describe the many different forms in which P can be 
found in the sediment [48, 49, 50, and 51]. The inorganic 
forms are often bound to iron, aluminum and calcium 
compounds or to clay minerals [22, 52]. The organic P occurs 
in more or less labile forms or in a refractory form that is not 
released during mineralization and constitutes a fraction 
permanently buried in the sediment. It can be debated which 
type of sediment P the different fractionations actually 
measure [53, 54], but fractionation schemes usually yield 
operationally defined fractions [53]. The reason for 
fractionating and studying P forms in the sediment is usually 
to allow a more precise description of the potentials for P 
release from the sediment and to predict its future influence on 
lake water concentrations [55, 56]. Particularly loosely sorbed 
organic and inorganic fractions as well as the iron-bound and 
redox-sensitive sorption of P are considered potentially 
mobile, which may contribute to an internal release [22, 57, 
58, 59, 60, and 61]. Total P release rates have been found to be 

closely correlated to the iron-bound P components in the 
sediment [62]. Due to inadequate knowledge of the 
mechanisms behind internal loading in shallow lakes[63,64], 
however, it has been difficult thus far to establish general 
relationships between simple lake or sediment characteristics, 
including different sediment P forms and the intensity and 
duration of internal loading. Such knowledge may provide 
information on the overall and long-term conditions for P 
sorption expected to prevail in the sediment, whereas 
knowledge of static P binding gives only limited insight into 
the changes of P forms released under dynamic conditions. 

4. RELEASE MECHANISMS 

The exchange of P between water and sediment is influenced 
by many factors. These include biological (e.g., bacterial 
activity, mineralization processes, and bioturbation), chemical 
(e.g., redox conditions, pH, iron ratio, nitrate availability), and 
physical factors (e.g., resuspension and sediment mixing) [22, 
25, 28, 64, 65, 66, 67, 68]. Overall, the net release of P 
observed from sediment is the difference between the 
downward flux caused mainly by sedimentation of particles 
continuously produced in the water column (algae, detritus) 
and the upward flux and gross release of P driven by the 
decomposition of organic matter and the P gradients and 
transport mechanisms established in the sediment. Laboratory 
experiments often demonstrate high release rates compared to 
in situ or mass balance calculations because the downward 
flux via sedimentation is excluded. The significance of gross 
release vs. net release can be observed in lakes during periods 
with clear water and low sedimentation rates. The interstitial 
water of the sediment that normally contains less than 1% of 
the sediment’s total P pool is important for the P transport 
between sediment and water. Interstitial phosphate constitutes 
the direct link to the water phase above and the solid-liquid 
phase boundary between water and sediment [22, 69]. An 
upward transport of P is created via a diffusion-mediated 
concentration gradient, normally appearing just below the 
sediment surface. Bioturbation from benthic invertebrates or 
through gas bubbles produced in deeper sediment layers 
during the microbial decomposition of organic matter may 
significantly enhance the process [63, 70, 71, and 72]. Benthic 
invertebrates can also have a negative effect on P release by 
supplying oxic water into the sediment and increasing the 
depth of the oxidized layer [22]. Wind-induced resuspension 
may significantly affect the sediment P release, particularly in 
shallow lakes. In very shallow lakes, resuspension events 
increase, more or less continuously, the contact between 
sediment and water [73, 74], and particulate nutrients settling 
to the bottom are most probably resuspended several times 
before long-term burial [75]. In some lakes, year-to-year 
variation in internal P loading has been shown to be largely 
controlled by wind mixing [76]. Potentially, resuspension of 
sediment can both reduce and increase the sediment P release 
because the overall process depends on the actual equilibrium 
conditions between sediment and water [67, 75, and 77]. 
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Submerged macrophytes, which particularly in shallow lakes 
may become abundant and the plant-filled volume 
consequently high, may also influence the P cycle both 
negatively and positively. Oxygen released from the roots can 
increase the redox-sensitive P sorption to iron compounds [78, 
79] and high abundance of macrophytes may diminish the 
resuspension rate and decrease P release from the sediment 
[80, 81]. Increased P release may be recorded in dense 
macrophyte beds and beneath macrophyte canopies due to low 
oxygen concentrations [82, 83]. 
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